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Motivation
Linear phases (RDT) in RT with complex acceleration history

Acceleration modification during RT instability changes automatically the
Froude number defined as:

Fr =
ε

kN
with N =

˛̨̨̨
g
ρ

∂ρ

∂z

˛̨̨̨1/2

. (1)

When Fr � 1 we have a "RDT" phase (Rapid Distorsion theory) i.e.
non-linear terms are negligeable compared to the buoyancy terms in
momentum/concentration equations for turbulent fluctuations.

The classical linear RDT equations for unstable, homogeneous, low
Atwood, incompressible flow write in Fourier space:

(∂t − νκ2)ûi(~κ, t) = −
“
δi3 −

κiκ3

κ2

”
ρ̂(~κ, t), (2)

(∂t − λκ2)ρ̂(~κ, t) = −N2û3(~κ, t). (3)

cf. A.Townsend (1976), H.Hanazaki et al. (1995)
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Motivation
Difficulty of modeling linear phases for single point turbulent models

One-point turbulent models (based on Rij for instance) are deficient when
capturing RDT phases. Indeed,

� rapid pressure correlation terms are strongly dependent on spectral
wave number directionality;

� the characteristics of turbulence usually change a lot during RDT
phases;

� classical one-point turbulent models lack informations. For instance,
Rij gives "componentality" but says nothing about "dimensionality" of
turbulence.
cf. Kassinos et al., JFM 428 (2001)
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Motivation
Example of linear phase in homogeneous unstable stratification

Analytic solutions for RDT equations exist and can be compared to
classical models.

For example, assuming that Fourier expressions R̂ij , ρ̂û3, ρ̂ρ̂ depends on κ
only (and not ~κ) one obtains a simple closure:

d < u3u3 >

dt
= −4

3
< ρu3 >, (4)

d < ρu3 >

dt
= −N2 < u3u3 > −

2
3
< ρρ >, (5)

d < ρρ >

dt
= −2N2 < ρu3 > . (6)
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Motivation
Example of linear phase in homogeneous unstable stratification

Time evolution for turbulent kinetic energy: Anisotropy evolution for Reynolds tensor:

As expected, very bad agreement between model and theory.
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Motivation
Objective

The objective is
1. Study RT during RDT phases with DNS
2. Define new tensors to take into account dimensionality of

< ρρ >

3. Propose a closure for linear phase using the new tensors
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DNS of RT during linear phase
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DNS of RDT RT phase
TRICLADE code (cf M.Boulet and J.Griffond 10th IWPCTM)

Solves 3D compressible Navier-Stokes+concentration equations for
mixtures of perfect gases.

Presently used scheme (hyperbolic part):

� high (5th) order one-step scheme with uniform time and space
accuracy;
cf. V. Daru and C. Tenaud, JCP 193 (2004)

� directional splitting;

� direct Euler solver (not Lagrange+projection);

� wave propagation method;
cf. R.J LeVêque

� different Riemann solvers.
cf. E.F. Toro

Presently used scheme (elliptic part+sources): operator splitting, 2nd order
treatment for viscous-diffusive terms and for sources.
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DNS of RDT RT phase
Simulation characteristics

� mesh 512× 256× 256, H = 1m;

� Atwood number At = 0.1, viscosity ν = 10−5m2s−1, Schmidt
number Sc = 1 and Prandtl number Pr ≈ 3/4;

� initial stratification adiabatic with γ = 5/3, pressure
p0 ≈ 4m2s−2 (incompressible limit);

� Initial perturbations for RT instability " M256 type" ;
cf. G.Dimonte et al., Phys. Fluids 16 (2004)

� Gravity: G = 0.2ms−2 for T ≤ 14s before RDT phase, then
G = 20ms−2 for T > 14s;

� Rescaling of mean pressure at the beginning of RDT phase to
avoid shock creation.
cf. A.Llor and D. Youngs IWPCTM (2002)
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DNS of RDT RT phase
Global results

Shadowscopy:

Time evolution of acceleration:
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DNS of RDT RT phase
Determination of linear phase

Mean concentration profile: Mean kinetic energy profile:

Linear phase (observed), between T = 14s and T = 14.15s:

� mixing zone length is still, N = 2.7s−1;

� turbulent kinetic energy explodes.
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DNS of RDT RT phase
Determination of linear phase

Vorticity at beginning RDT phase: Vorticity at the end of RDT phase:
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DNS of RDT RT phase
Validity of RDT equations

Total kinetic energy, comparison DNS/RDT:
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DNS of RDT RT phase
Validity of RDT equations

Spectral structure of density spectra, comparison DNS/RDT:
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DNS of RDT RT phase
Validity of RDT equations

Spectral structure of vertical velocity, comparison DNS/RDT:
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DNS of RDT RT phase
Validity of RDT equations

Spectral structure of horizontal velocity, comparison DNS/RDT:

Good agreement at large scale where energy is contained
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DNS of RDT RT phase
Spectra

Velocity spectra at center of mixing zone:

Growth of anisotropy.
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DNS of RDT RT phase
Spectra

Concentration spectra:

Small modification of concentration field.
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DNS of RDT RT phase
Spectra

Mass flux spectra:

Slope modification observed? cf. J.L. Lumley, Phys. Fluids 10 (1967)
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One-point structure tensors in
Rayleigh-Taylor during linear

RDT phases
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One-point structure tensors
Hydrodynamic tensors from Kassinos and Reynolds

One-point hydrodynamic tensors are defined by:

Componentality Rij = εipqεjts < ψq,pψs,t >xy , (7)

Dimensionality Dij =< ψn,iψn,j >xy , (8)

Circulicity Fij =< ψi,nψj,n >xy , (9)

"Inhomogeneity" Cij =< ψi,nψn,j >xy . (10)

where the stream vector ~ψ is solution of

ψi,nn = −ωi , ψi,i = 0, ui = εitsψs,t . (11)

cf. Kassinos et al., JFM (2001) also C.Cambon et al. Phys. Fluids 4 (1992).

They are not independent as,

Rij + Dij + Fij − (Cij + Cji) = 2k2δij . (12)
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One-point structure tensors
Evolution of purely kinematic tensors
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One-point structure tensors
Evolution of purely kinematic tensors

"Inhomogeneity" tensor is equal to 0:

Poloidal velocity correlations negligeable.

~u = ~∇× spol x3| {z } +~∇× ~∇× stor x3| {z } (13)

(0, 0, ψ3) (ψ1, ψ2, 0)
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One-point structure tensors
Representation of purely kinematic tensors in Lumley triangle

II(A) = −1
2

Trace(A2), III(A) =
1
3

Trace(A3) (14)
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One-point structure tensors
Definition of new velocity/tensor

We define an enhanced velocity by adding a solenoidal part dependent on density ρ:

v̂i(~κ, t) = ûi(~κ, t) + û(ρ)
i (~κ, t), with û(ρ)

i (~κ, t) =
κi

κN
ρ̂(~κ, t). (15)

cf. J.J. Riley and al (1981), F.S. Godeferd and C. Cambon Phys Fluid 6 (1994)

The time evolution in RDT is determined by the linear equation:

d

dt
v̂i = Lij v̂j , (16)

with

Lij = −N
„
Pi3

κj

κ
+ Pj3

κi

κ

«
, with Pij = δij −

κiκj

κ2
. (17)

The second order spectral tensor can be formed from enhanced velocity:

V̂ij (~κ) =< v̂i (~λ)v̂∗j (~κ− ~λ) > (18)

d

dt
V̂ij = LinV̂nj + LjmV̂∗mi (19)

Dimensionality for ρ defined as:

D̂(ρ)
ij (~κ) =< u(ρ)

i (~λ)u(ρ)∗
j (~κ− ~λ) > (20)
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One-point structure tensors
evolutions of new tensor in physical space

Integration over all wave numbers:
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One-point structure tensors
Representation of mixed tensors in Lumley triangle

cf. different from dimensionality tensor X.Albets-Chico and al. IUTAM (2010).
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Anisotropy decomposition in linear RT
Representation of the enhanced velocity tensor in a Craya-Herring frame

The Craya-Herring frame is defined by,
e1 = ~κ× n/|~κ× n|, e2 = ~κ× e1/|~κ× e1|, e3 = ~κ/|~κ|.

We have for axisymetric turbulence,

1
2

ei
nV̂nmej

m =

0@ Φ1 0 0
0 Φ2 Ψ∗

0 Ψ Φ3

1A (21)

where

� Φ1 represents turbulent kinetic energy of poloidal velocity;
� Φ2 is the turbulent kinetic energy of toroidal velocity;
� Φ3 define a potential energy from the density spectrum;
� Ψ generates the vertical buoyancy flux.

1
2
< u3ρ >= N

Z
ΨRsin(θ)d3~κ (22)
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Anisotropy decomposition
Expansion for the tensors

The evolution equations write:

∂Φ1

∂t
= 0,

∂ΨI

∂t
= 0, (23)

∂Φ2

∂t
− Nsin(θ)ΨR = 0, (24)

∂Φ3

∂t
− Nsin(θ)ΨR = 0, (25)

∂ΨR

∂t
− 2Nsin(θ)(Φ2 + Φ3) = 0. (26)

This suggests to use the decomposition:

Φ2(~κ, t) + Φ3(~κ, t)

2
= H(dir)

0 (κ, t) + H(dir)
1 (κ, t) sin2

θ + ... + H(dir)
n (κ, t) sin2n

θ + ... (27)

ΨR (~κ, t) = sin θ
“

H(pola)
0 (κ, t) + H(pola)

1 (κ, t) sin2
θ + ... + H(pola)

n (κ, t) sin2n
θ + ...

”
(28)

Compatibility with constraint of polar isotropy, at κ1 = κ2 = 0, Ψ = 0 and Φ1 = Φ2.

∂Hpola
n

∂t
= 2NHdir

n ,
∂Hdir

n+1

∂t
= NHpola

n . (29)
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Anisotropy decomposition
Expansion for the tensors

Assuming to simplify that poloidal velocity equals 0 (Φ1 = 0) we have:

1

2
R(t) =

Z
Φ2 − Φ3

2
(~κ)M(u)(~κ)d3

~κ| {z } +

Z
Φ2 + Φ3

2
(~κ, t)M(u)(~κ)d3

~κ| {z } (30)

= Rpolarized + Rdirectional (t)

= Rpolarized +
X

n
R(n)

Z
H(dir)

n dκ(t) (31)

in the same way,

1

2
D(ρ)(t) = Dpolarized

(ρ)
+

X
n

D(n)
Z

H(dir)
n dκ(t) (32)

with
R(n) =

Z
κ

n
H M(u)d3

~κ, D(n) =

Z
κ

n
H M(ρ) d3

~κ. (33)

M(u)(~κ) =

0BBBBBBB@

κ2
1κ2

3
κ2

H κ2
κ1κ2κ2

3
κ2

H κ2 −κ1κ3
κ2

κ1κ2κ2
3

κ2
H κ2

κ2
2κ2

3
κ2

H κ2 −κ2κ3
κ2

−κ1κ3
κ2 −κ2κ3

κ2
κ2

H
κ2

1CCCCCCCA
,M(ρ)(~κ) =

0BBBBB@
κ2

1
κ2

κ1κ2
κ2

κ1κ3
κ2

κ1κ2
κ2

κ2
2

κ2
κ2κ3

κ2
κ1κ3

κ2
κ2κ3

κ2
κ2

3
κ2

1CCCCCA d3
~κ,

(34)
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Model for RDT using new tensor
Back to the first example!

Time evolution for turbulent kinetic energy: Anisotropy evolution for Reynolds tensor:

Improvement due to better modeling of anisotropy evolution.
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Conclusion

� DNS of linear RDT phase for Rayleigh-Taylor instability
have been performed.

� An analysis by one-point structure tensors has been
presented.

� An original decomposition of anisotropy has been
realized based on Craya-Herring representation of
enhanced velocity.

� This allows a new one-point closure for linear RT phase
based on dimensionality of < ρρ >.

Thank you for your attention
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