ANALYTIC APPROACH to NONLINEAR HYDRODYNAMIC INSTABILITIES DRIVEN by g(t)*

Karnig O. Mikaelian

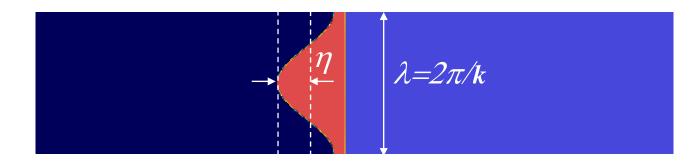
Lawrence Livermore National Laboratory

Livermore, California, USA

IWPCTM 12

Moscow, Russia

July 12-16, 2010



*Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

FOUR LEVELS of COMPUTATIONAL ACCURACY

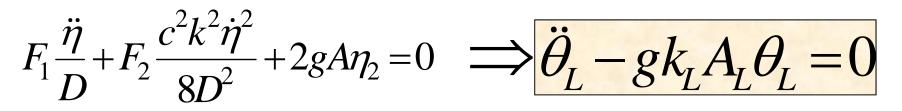
 $\frac{\partial(\rho u_{j})}{\partial t} + \sum_{i=1}^{3} \frac{\partial(\rho u_{i} u_{j})}{\partial x_{i}} + \frac{\partial p}{\partial x_{i}} = 0$

- 1. Euler Equations
- 2. Potential Theory (Layzer) $F_1 \frac{\ddot{\eta}}{D} + F_2 \frac{c^2 k^2 \dot{\eta}^2}{8D^2} + 2gA\eta_2 = 0$
 - $F_1(\eta_2), F_2(\eta_2), D(\eta_2)$ $\eta_2 = \eta_2(., \eta_0 k, e^{-k\eta})!$
- 3. Potential Theory W/ η₀ = η *
 Magic: η₂ becomes Constant!
 4. Detertial Theory W/ η = η * and Large q(
- 4. Potential Theory W/ $\eta_0 = \eta^*$ and Large g(t)

LEVEL 3

For
$$\eta \leq \eta^*$$
, use linear theory
 $\ddot{n} - \sigma k A n = 0$ (Rayleigh Tay

$\frac{\eta - g K A \eta = 0}{For \ \eta \ge \eta^*, use nonlinear theory}$

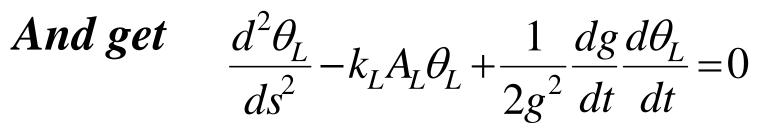


$$\theta_L \equiv e^{(\eta - \eta_0)k_L}, \ \eta = \eta_0 + \frac{1}{k_L} \ln(\theta_L), \ g = g(t),$$
$$\eta^* \equiv \frac{1}{k(1+c)} = \frac{1}{2k} \text{ or } \frac{1}{1/3k}$$

LEVEL 3 \rightarrow **LEVEL 4**

Define $s \equiv \int \sqrt{g(t)} dt$, substitute in

$$\ddot{\theta}_L - gk_L A_L \theta_L = 0 \quad Level 3$$



Drop the last term and solve it

$$\theta_L = \cosh(s_{\sqrt{k_L A_L}}) \text{ Level 4}$$

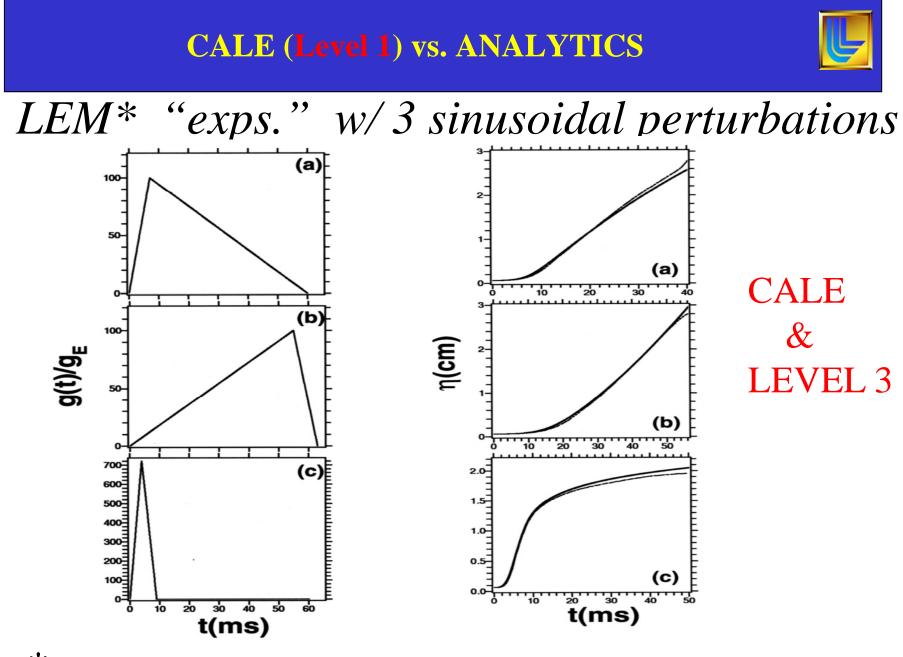
For $\sim all g(t)$.

EXAMPLES

g~constant \Rightarrow RT, Level 4=Level 3, sol. known

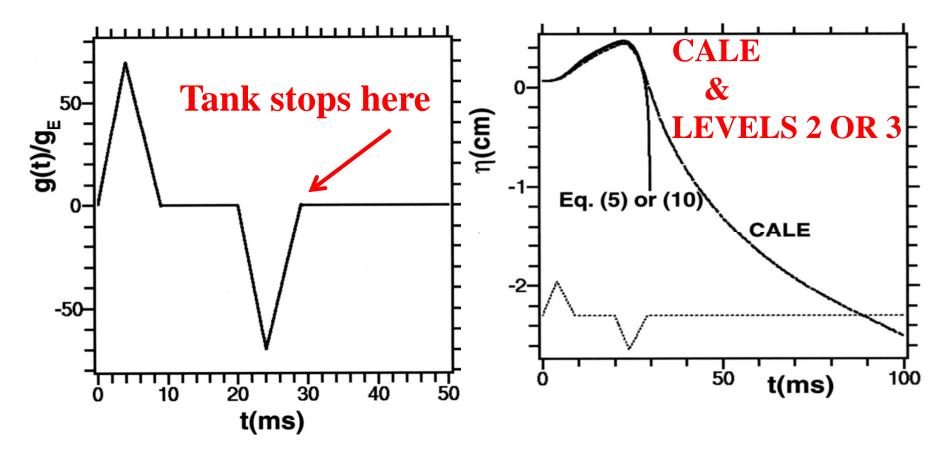
- $g \sim \delta(t) \implies RM$, Level 4 sol. does not work (g=0) Level 3 sol. known.
- $g \sim t$ Level 4 \cong Level 3, sols. known: Level 4 sol.: $\cosh(s \sqrt{k_L A_L})$, always Level 3 sol.: Airy functions

Other examples exist (PRE <u>81</u>, 016325 (2010)). Similarity to Schrödinger's Eq.

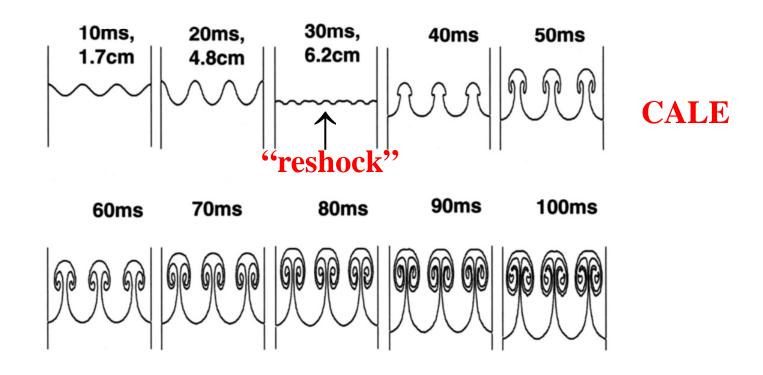


*Dimonte & Schneider PRE <u>54</u>, 3740 (1996)

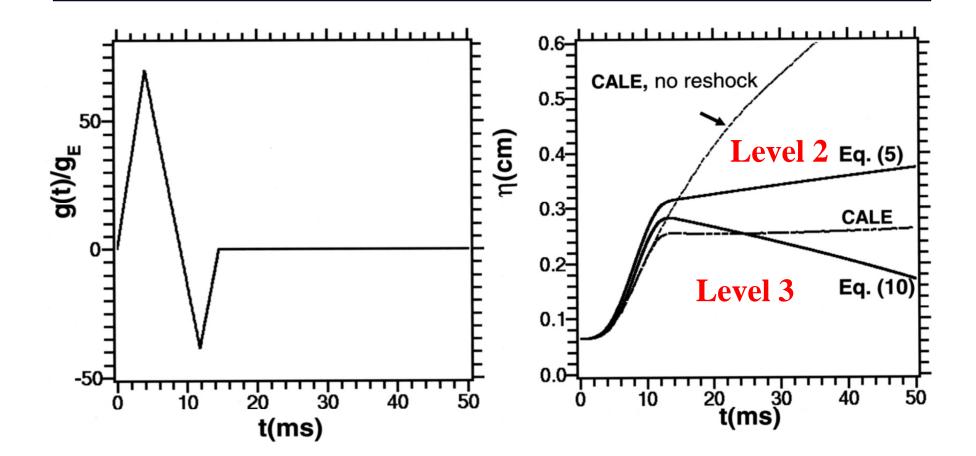
Two equal and opposite impulses ("shocks")



Two equal and opposite impulses Bubbles ⇔Spikes upon "reshock"



SMALL DIFFERENCE BETWEEN LEVELS 2 & 3



FREEZE-OUT WITH A WEAKER RESHOCK

IMPULSE ~ SHOCK

$$g \left| \int \\ -|2\tau| - t \right|$$

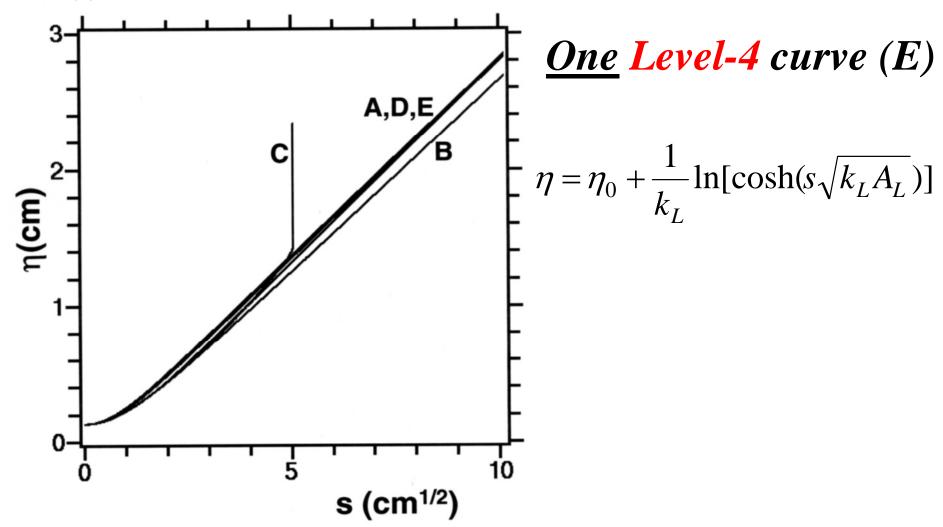
A narrow impulse acts like a shock.

Corrections to Richtmyer's formula ($\dot{\eta} = \eta_0 \Delta v k A$) due to the finite width (2 τ) of the pulse:

$$\dot{\eta} = \eta_0 \Delta v k A (1 + 7 \Delta v k A \tau / 30 + ...)$$

This is an expansion. Exact solution also known.

4 Different Accelerations w/ CALE (A, B, C, D)



- 1. Levels 2-4 compare very well with Level 1 provided g>0 and $\eta = \eta_{bubble}$
- 2. η_{bubble} scales w/s(t) $\equiv \int \sqrt{g(t)} dt$.

- -----

- 3. η_{spike} appears to scale w/ $\Delta x(t) \equiv \iint g(t')dt'dt$. Can show this for A=1 from Layzer's Eq.
- 4. Zitterbewegung (i.e., rapid oscillation of g(t) around an average value) has little effect on η .
- 5. Spikes for A<1 still need work (old problem).
- 6. Many interesting experiments (freeze-out, etc.) could have been performed w/ LEM.