Turbulent mixing at gas-liquid interface with the width of mixing zone up to 200 mm

N.V.Nevmerzhitsky, V.I.Dudin, A.A.Nikulin, E.D.Sen'kovsky, V.V.Marmyshev, E.A.Sotskov, O.L.Krivonos, A.A.Polovnikov, E.A.Polovnikov, S.A.Abakumov

Russian Federal Nuclear Center – VNIIEF

607190, Russia, Sarov E-mail: root@gdd.vniief.ru

Format of the presentation: oral

ABSTRACT

The authors present results of experiments with study of growth of turbulent mixing occurred at Rayleigh-Taylor instability at gas-liquid interface with the width of the mixing zone H up to 200 mm.

The liquid layer (water) with the mass of 3.3 kg was accelerated by compressed air in transparent cylindrical channel with the section of \emptyset 210 mm. The pressure of compressed air reached 8,4 gauge atmospheres, the acceleration $-g = (0.5 \div 1) \cdot 10^3 g_0$ (where $g_0 = 9.8 \text{ M/c}^2$), the layer displacement S – up to 350 mm, the depth of penetration of gas front in liquid h_{AT} – up to 50 mm, Reynolds number of the flow reached $Re = \frac{H \cdot \sqrt{A \cdot g \cdot H}}{V} = 5 \cdot 10^6$ (where $A \approx 1$ – Atwood number, V - kinematic viscosity coefficient of water).

It was obtained that:

- Coefficient β_{AT} , describing the average rate of penetration of gas front in liquid ($\beta_{AT} = \Delta h_{AT}/\Delta 2S$), equals $\beta_{AT} \approx 0.11$ over the range of layer displacements 10 mm < S < 50 mm (at Re up to $5 \cdot 10^4$);
- Coefficient β_{AT} falls approximately 35% down when the displacement of the liquid layer increases from ≈ 50 mm to ≈ 100 mm (with the growth of Re from $5\cdot10^4$ to $5\cdot10^5$), and then, at the further growth of the layer displacement to 350 mm (with the growth of Re to $\approx 5\cdot10^6$) doesn't change and equals $\beta_{AT} = 0.06 \div 0.08$, moreover it is observed some pulsation of penetration of gas front in liquid;
- Separate bubbles of the mixing zone become unstable with the lapse of time the development of secondary bubbles occurs on them.