

A subgrid scale model accounting for rapid distortion and spectral equilibrium limits in variable density flows

<u>Olivier Soulard</u>, Jérôme Griffond, Anne Burbeau, and Denis Souffland

CEA-DAM

IWPCTM12, Moscow 12-17 July 2010

IWPCTM12 12-17 July 2010 Intro RDT limit Equil. limit General Case Validation RDT Validation Eq.

Context :

Large Eddy Simulation of shock tube experiments

F_s and $\mathcal{F}_n \ge 1$ → free decay → Equilibrium regime \mathcal{F}_s or $\mathcal{F}_n \ll 1$ → Rapidly Distorted Turbulence (RDT) regime

RDT results from :

- stratification effects : stable or unstable (Rayleigh-Taylor)
- compressions/expansions

IWPCTM12 12-17 July 2010	Intro	RDT limit	Equil. limit	General Case	Validation RDT	Validation Eq.
	•00	00000	0000	000	000000000000	000000000

Purpose : Derivation of a SGS model

Our purpose is to derive a subgrid-scale (SGS) model :

- coherent with RDT and equilibrium limits
- accounting for stratification and compression effects

Main steps of the derivation :

- 1. We discuss some properties of small scale turbulence in two idealized situations
 - Homogeneous isotropic turbulence submitted to a rapid distortion
 - Homogeneous isotropic turbulence submitted to a slow distortion
- 2. We propose two SGS expressions compatible with each of these two asymptotic cases
- 3. We treat the general case by combining these two expressions

\Rightarrow A mixed model is obtained

Notations and general assumptions

We consider a turbulent variable density flow governed by Navier-Stokes equations, with density ρ , velocity \boldsymbol{u} , pressure p, viscosity ν .

The filtering operation is denoted by :

$$\langle Q \rangle_{\Delta} = \int G(\mathbf{r}, \Delta) Q(\mathbf{x} - \mathbf{r}) d\mathbf{r}$$

 $G(r, \Delta)$ is a commutative and isotropic filter.

The subgrid stresses are defined by :

$$\begin{split} \tau_{ij} &= \left\langle \mathsf{U}_{i}\mathsf{U}_{j}\right\rangle_{\Delta} - \left\langle \mathsf{U}_{i}\right\rangle_{\Delta} \left\langle \mathsf{U}_{j}\right\rangle_{\Delta}, \tau_{i\rho} &= \left\langle \rho\mathsf{U}_{i}\right\rangle_{\Delta} - \left\langle \rho\right\rangle_{\Delta} \left\langle \mathsf{U}_{i}\right\rangle_{\Delta}, \\ \tau_{\rho\rho} &= \left\langle \rho^{2}\right\rangle_{\Delta} - \left\langle \rho\right\rangle_{\Delta}^{2} \end{split}$$

For later convenience, we collect the stresses in :

$$\Sigma_{ij}(\Delta) = \langle X_i X_j \rangle_{\Delta} - \langle X_i \rangle_{\Delta} \langle X_j \rangle_{\Delta} \text{ with } X_i = u_i \text{ for } i = 1, 2, 3 \text{ and } X_4 = \rho$$

Statistical averages and fluctuations are denoted by :

$\overline{\mathsf{Q}} \text{ and } \mathsf{Q}'$

RDT limit

 IWPCTM12
 Intro
 RDT limit
 Equil. limit
 General Case
 Validation RDT
 Validation Eq

 12-17 July 2010
 Image: source of the second control of the second contro

RDT limit and SGS models

- The impact of RDT on SGS modelling has been studied by several authors (i.e. Shao and Sarkar, 99; Chen et al., 05)
- Most of these works consist in a priori evaluation of existing models against experiments or DNS (i.e. Liu et al., 99):
 - Smagorinsky-like models fail to reproduce the main behavior of small turbulent scales.
 - Scale-similarity and mixed models seem to perform better
- Fewer works explicitly use RDT theory to derive a SGS model :
 - Laval & Dubrulle (01): stochastic Langevin model in spectral space based on RDT
 - Li & Meneveau (04) : exponential closure based on RDT with a restrictive "pressure released" assumptions
 - Hill & Pantano : vortex alignment based on strained RDT, but production/dissipation equilibrium is assumed

We aim to derive an algebraic model in physical space directly from RDT assumptions

IWPCTM12

12-17 July 2010

Intro RDT limit Equil. limit General Case Validation RDT Validation Eq.

WKB-RDT equations for variable density flows

Main RDT assumptions :

$$\mathcal{F}_{s}(\kappa) = rac{\omega_{\kappa}}{\mathcal{S}} \ll 1 \ , \ \mathcal{F}_{n}(\kappa) = rac{\omega_{\kappa}}{\mathcal{N}} \ll 1$$

 κ = wave number $\;$; $\;\omega_{\kappa}$ = turbulent frequency at scale $\kappa.$

Variable density Navier-Stokes equations can be linearized as : $\frac{\hat{D}\boldsymbol{M}}{Dt} = -\boldsymbol{A}\boldsymbol{M} - \boldsymbol{M}\boldsymbol{A}^{\top} , \text{ with } \frac{\hat{D}}{Dt} \cdot = \frac{\partial}{\partial t} \cdot -\kappa_k \frac{\partial \widetilde{U}_k}{\partial x_l} \frac{\partial}{\partial \kappa_l} \cdot$

 ${\it M}$ is the 4 imes 4 density-velocity spectral correlation tensor :

$$M_{ij}\delta(\kappa+\kappa')=\overline{\hat{X}_{i}'(\kappa)\hat{X}_{j}'(\kappa')}$$

A is the interaction matrix :

$$A_{il} = \begin{cases} \frac{\partial \widetilde{U}_k}{\partial x_l} (\delta_{ik} - 2n_i n_k) - \frac{1}{2} \operatorname{div} \widetilde{\boldsymbol{U}} \delta_{il} &, i = 1, 2, 3 \text{ and } l = 1, 2, 3 \\ \frac{1}{p} \frac{\partial \overline{P}}{\partial x_k} (\delta_{ik} - n_i n_k) &, i = 1, 2, 3 \text{ and } l = 4 \\ \frac{1}{s} \frac{\partial \widetilde{S}}{\partial x_k} &, i = 4 \text{ and } l = 1, 2, 3 \\ -\frac{1}{2} \operatorname{div} \widetilde{\boldsymbol{U}} &, i = 4 \text{ and } l = 4 \end{cases}$$

 \tilde{s} is the mean entropy and **n** is the unit wave vector : $\mathbf{n} = \kappa/\kappa$.

 IWPCTM12
 Infro
 RDT limit
 Equil. limit
 General Case
 Validation RDT
 Validation E

 12-17 July 2010
 Image: state st

Properties of the WKB-RDT solution for HIT

General case :

the WKB-RDT equations can be integrated as : $\boldsymbol{M}(t) = \boldsymbol{H}(t,t')\boldsymbol{M}(t')\boldsymbol{H}^{\top}(t,t') \ ,$

with $H(t, t') = exp^+ \left(-\int_{t'}^t \mathbf{A}(s) ds \right)$ along the path $\frac{d\kappa_i}{dt} = -\kappa_k \frac{\partial \widetilde{U}_k}{\partial x_i}$

Case of interest :

RDT applied to an initially homogeneous isotropic turbulence (HIT) with Kolmogorov spectrum. The solution becomes :

$$\boldsymbol{M}(\boldsymbol{\kappa},t) = \frac{C_0 \tilde{\varepsilon}^{2/3} \kappa^{-5/3}}{4\pi \kappa^2} \boldsymbol{b}(\boldsymbol{n},t)$$
(1)

where $\tilde{\varepsilon}$ is the dissipation, C_0 is a constant, **b** is a matrix depending on the interaction history.

Consequences for the rapid distortion of an initial HIT

During the interaction, the inertial range scaling :

is preserved

IWPCTM12

12-17 July 2010

- determines the scaling of velocity anisotropy
- determines the scaling of density-velocity correlation

SGS model based on WKB-RDT

The mean SGS stresses are linked to the turbulent spectrum **M** and the mean gradients :

$$\overline{\boldsymbol{\Sigma}}(\Delta) = \int \left[1 - \left| \hat{\boldsymbol{G}}(\boldsymbol{\kappa}, \Delta) \right|^2 \right] \boldsymbol{M}(\boldsymbol{\kappa}) d\boldsymbol{\kappa} + \Delta^2 \boldsymbol{G}^* \boldsymbol{C}$$
(2)

 \hat{G} : filter transfer function, G^{*}: 2nd order moment of the filter C: mean gradient tensor: $C_{ij} = \frac{1}{3} \frac{\partial \overline{X}_i}{\partial x_{\rho}} \frac{\partial \overline{X}_j}{\partial x_{\rho}}$

Injecting the RDT solution (1) into the SGS stress tensor yields

$$\overline{\boldsymbol{\Sigma}}(\Delta) = \Delta^{\frac{2}{3}} \boldsymbol{B} + \Delta^2 \boldsymbol{G}^* \boldsymbol{C}$$

with : $\boldsymbol{B}(t) = c_0 \tilde{\varepsilon}^{\frac{2}{3}} \int_0^\infty u^{-5/3} du \frac{1}{4\pi} \int_S \boldsymbol{b}(\boldsymbol{n}, t) dS$

B and C are unknowns → 2 possibilities :

• Make a short time expansion of $B \rightarrow$ functional model

Use super-grid information → structural model
 Literature tends to indicate that the second possibility is more appropriate

SGS model based on WKB-RDT

Structural models are usually based on the Germano tensor.

$$\mathcal{L}_{ij} = \left\langle \left\langle X_i \right\rangle_\Delta \left\langle X_j \right\rangle_\Delta \right\rangle_{\tilde{\Delta}} - \left\langle \left\langle X_i \right\rangle_\Delta \right\rangle_{\tilde{\Delta}} \left\langle \left\langle X_j \right\rangle_\Delta \right\rangle_{\tilde{\Delta}}$$

Main issue : *L* does not allow to separate mean/turbulent fields
 Proposed solution : introducing a tensor, invariant under the addition of a constant mean gradient

$$\mathcal{G}_{ij} = \left(\frac{\partial \langle X_i \rangle_{\Delta}}{\partial x_{\rho}} - \frac{\partial \langle \langle X_i \rangle_{\Delta} \rangle_{\tilde{\Delta}}}{\partial x_{\rho}}\right) \left(\frac{\partial \langle X_j \rangle_{\Delta}}{\partial x_{\rho}} - \frac{\partial \langle \langle X_j \rangle_{\Delta} \rangle_{\tilde{\Delta}}}{\partial x_{\rho}}\right)$$

L and G are linked to the spectrum and mean gradients by :

$$\begin{aligned} \overline{\boldsymbol{\mathcal{L}}} &= \left(\tilde{\tilde{\Delta}}^2 - \Delta^2\right) \mathbf{G}^* \boldsymbol{\mathcal{C}} + 2\int \left[\left|\hat{\boldsymbol{G}}^*(\kappa \Delta)\right|^2 - \left|\hat{\boldsymbol{G}}^*(\kappa \tilde{\tilde{\Delta}})\right|^2\right] \boldsymbol{M} \, d\kappa \\ \overline{\boldsymbol{\mathcal{G}}} &= 2\int \left|\hat{\boldsymbol{G}}^*(\kappa \Delta) - \hat{\boldsymbol{G}}^*(\kappa \tilde{\tilde{\Delta}})\right|^2 \kappa^2 \boldsymbol{M} \, d\kappa \end{aligned}$$

By injecting (1), we deduce the following model :

IWPCTM12

12-17 July 2010

$$\overline{\mathbf{\Sigma}}(\Delta) = C_{\mathcal{G}}(\mu)\Delta^2\overline{\mathcal{G}} + C_l(\mu)\overline{\mathcal{L}}$$

For a sharp cut-off spectral filter : $\mu = \frac{\tilde{\tilde{\Delta}}}{\Delta}, C_g(\mu) = \frac{2}{\pi^2} \frac{\mu^2}{\mu^2 - 1}, C_l(\mu) = \frac{1}{\mu^2 - 1}$

ntro **RDT limit** Equil. limit General Case Validation RDT Validation I

Equilibrium limit

Equilibrium limit and SGS models

- Equilibrium limit plays a central role in many SGS models
- Usually :

IWPCTM12

12-17 July 2010

- Production/dissipation equilibrium in SGS equation
 - \rightarrow allows to set predefined model constants (Lilly, 1967)
- Other possibility :
 - Some theories predict equilibrium at the spectral level (Lumley, 1967; Ishihara *et al.*, 02)
 - These equilibrium spectra lead to Smagorinsky-like models (Li & Meneveau, 04)
- Applicability to shock tube context :
 - Most equilibrium theories are devoted to isovolume flows
 - Stratified variable density flows were dealt with by :
 - Yoshizawa (83), but erroneous equilibrium spectrum
 - Kaneda & Yoshida, but unknown constants
 - It seems that no derivation takes into account the effects of a mean compression/expansion

We aim to derive an equilibrium spectrum in presence of stratification and compression/expansion, with known constants

Intro RDT limit Equil. limit General Case Validation RDT Validation Education RDT Validation education RDT Validation education RDT Validation education edu

Canuto & Dubovikov spectral model

- Starting point = Canuto & Dubovikov spectral model (PoF, 1996)
 - Langevin model
 - Accounts for stratification and compression/expansion
 - Gives the evolution of the spectra of :
 - > velocity E_{ij} , density Q, density/velocity F_i
 - 2 contributions :
 - > Rapid contribution due to mean gradients \approx RDT
 - Slow contribution \approx transport/dissipation in spectral space \rightarrow set by RNG techniques
- C&D model admits an asymptotic solution in the equilibrium regime
- Main hypotheses : High Froude Number + Stationarity

$$\frac{1}{\mathcal{F}_{s}(\kappa)} \sim \frac{1}{\mathcal{F}_{n}^{2}(\kappa)} \sim \epsilon \ll 1 \ , \ \frac{\partial}{\partial t} \sim \epsilon^{2}$$

 Intro
 RDT limit
 Equil. limit
 General Case
 Validation RDT
 Validation Eq

 000
 0000
 000
 0000000000
 0000000000
 0000000000

Equilibrium asymptotic solution for Canuto's spectral model

Asymptotic expansion : $\mathbf{x} = \mathbf{x}^{(0)} + \epsilon \mathbf{x}^{(1)} + \cdots$ $\mathbf{e}_{ij}^{(0)} = C_0 \tilde{\varepsilon}^{2/3} \kappa^{-5/3} \frac{\delta_{ij}}{3} \ , \ \mathbf{q}^{(0)} = \sigma_t C_0 \tilde{\varepsilon}_\rho \tilde{\varepsilon}^{-1/3} \kappa^{-5/3}$ $\frac{\mathbf{e}_{jj}^{(1)}}{\mathbf{e}^{(0)}} = \left(\alpha_1 \frac{\mathcal{D}}{\omega_{\kappa}} + \alpha_2 \frac{\mathcal{N}^2}{\omega_{\kappa}^2}\right) \frac{\delta_{ij}}{\mathbf{3}} - \alpha_3 \frac{\mathcal{S}_{ij}}{\omega_{\kappa}} - \alpha_4 \frac{\mathcal{N}_{ij}^2}{\omega_{\kappa}^2}$ $\frac{\mathbf{q}^{(1)}}{\mathbf{q}^{(0)}} = -\beta_1 \frac{\mathcal{D}}{\omega_r} - \beta_2 \frac{1}{\omega_r^2} \left(\frac{5}{8}\mathcal{N}^2 + \Omega^2\right) \quad , \quad \mathbf{f}_i^{(1)} = -\gamma_1 \frac{\mathbf{e}^{(0)}}{\omega_r} \frac{1}{\tilde{s}} \frac{\partial \tilde{s}}{\partial \mathbf{x}_r}$ e, f, q : modulus spectra ; $\alpha_*, \beta_*, \gamma_*, C_0, \sigma_t$: constants ; $\omega_\kappa = \tilde{\epsilon}^{1/3} \kappa^{2/3}$ $\Omega^{2} = \overline{\rho}^{2} \frac{\tilde{\varepsilon}}{\tilde{\varepsilon}_{-}} \frac{1}{\tilde{s}} \frac{\partial \tilde{s}}{\partial x_{+}} \frac{1}{\tilde{s}} \frac{\partial \tilde{s}}{\partial x_{+}} \quad ; \quad \mathcal{D} = \operatorname{div} \overline{\boldsymbol{u}}$ \mathcal{N}_{ii} : trace-free stratification tensor ; \mathcal{S}_{ii} : trace-free deformation tensor Consequences Anisotropy is due to mean velocity gradients and stratification Stratification contribution scales as κ^{-3} Density flux scales as $\kappa^{-7/3}$

Velocity divergence modifies density and energy spectrum

IWPCTM12

12-17 July 2010

Equilibrium SGS model

Equilibrium spectra are injected in equation (2) :

$$\begin{split} & \frac{\overline{\tau}_{ij}}{2k_{\Delta}} = \frac{1}{3} \left[1 + a_{\tau} \frac{\mathcal{D}}{\omega_{\Delta}} + b_{\tau} \frac{\mathcal{N}^2}{\omega_{\Delta}^2} \right] \delta_{ij} - c_{\tau} \frac{\mathcal{S}_{ij}}{\omega_{\Delta}} - d_{\tau} \frac{\mathcal{N}^2_{ij}}{\omega_{\Delta}^2} \\ & \frac{\overline{\tau_{\rho\rho}}}{\vartheta_{\Delta}} = 1 - a_{\vartheta} \frac{\mathcal{D}}{\omega_{\Delta}} - b_{\vartheta} \frac{\mathcal{N}^2}{\omega_{\Delta}^2} - c_{\vartheta} \frac{\Omega^2}{\omega_{\Delta}^2} \\ & \overline{\tau_{i\rho}} = - a_{\varphi} \frac{k_{\Delta}}{\omega_{\Delta}} \eta_i \end{split}$$

 a_* , b_* , c_* and d_* are known constants

 k_{Δ} , $\vartheta_{\Delta} \omega_{\Delta}$ can be determined with the tensor $\mathcal{G} \rightarrow$ dynamic model :

$$k_\Delta \propto \Delta^2 \overline{\mathcal{G}}_{kk}$$
 , $\vartheta_\Delta \propto \Delta^2 \overline{\mathcal{G}}_{
ho
ho}$, $\omega_\Delta \propto \sqrt{\overline{\mathcal{G}}_{kk}}$

IWPCTM12 12-17 July 2010 Intro RDT limit Equil. limit General Case Validation RDT Validation Eq

General case

Combining RDT and equilibrium limits

Up to now, we derived :

- a SGS model based on a spectrum M^{Eq} for $\mathcal{F}\gg 1$
- a SGS model based on a spectrum M^{RDT} for $\mathcal{F} \ll 1$
- To treat the general case, we propose to arbitrarily decompose the mean stresses as :

$$\begin{split} \overline{\boldsymbol{\Sigma}}(\Delta) = & \int_{0}^{\kappa_{F}} \left[1 - \left| \hat{\boldsymbol{G}}(\boldsymbol{\kappa}, \Delta) \right|^{2} \right] \boldsymbol{M}^{\textit{RDT}}(\boldsymbol{\kappa}) \boldsymbol{d\boldsymbol{\kappa}} \\ & + \int_{\kappa_{F}}^{\infty} \left[1 - \left| \hat{\boldsymbol{G}}(\boldsymbol{\kappa}, \Delta) \right|^{2} \right] \boldsymbol{M}^{\textit{EQ}}(\boldsymbol{\kappa}) \boldsymbol{d\boldsymbol{\kappa}} + \Delta^{2} \boldsymbol{G}^{*} \boldsymbol{C} \end{split}$$

κ_F is a limit wave number such that :

$$\mathcal{F}(\kappa_F) = \mathcal{F}_0 \;\; \Rightarrow \;\; \kappa_F = \Delta^{-1} \left[\frac{\mathcal{F}_0}{\mathcal{F}_\Delta} \right]^{3/2}$$

 \mathcal{F}_0 is a limit Froude number taken equal to 1 \mathcal{F}_Δ is the grid-scale Froude number :

Mixed model

The resulting model takes the form :

$$\begin{split} \overbrace{\tau_{ij}}^{\mathcal{C}} &= C_l(\mu)\overline{\mathcal{L}}_{ij} + C_g(\mu)\Delta^2\overline{\mathcal{G}}_{kk} \left\{ \frac{\delta_{ij}}{3} + \xi_{\frac{5}{3}} b_{ij}^{\mathcal{G}} - \left[\left(1 - \xi_{\frac{7}{3}} \right) A_{\tau} \frac{\mathcal{D}}{\omega_{\Delta}} + \left(1 - \xi_{3} \right) B_{\tau} \frac{\mathcal{N}^2}{\omega_{\Delta}^2} \right] \frac{\delta_{ij}}{3} \\ &- \left(1 - \xi_{\frac{7}{3}} \right) C_{\tau} \frac{\mathcal{S}_{ij}}{\omega_{\Delta}} - \left(1 - \xi_{3} \right) D_{\tau} \frac{\mathcal{N}_{ij}^2}{\omega_{\Delta}^2} \right\} \\ \overline{\tau}_{\rho\rho} &= C_l(\mu)\overline{\mathcal{L}}_{\rho\rho} + C_g(\mu)\Delta^2\overline{\mathcal{G}}_{\rho\rho} \left\{ 1 + \left(1 - \xi_{\frac{7}{3}} \right) A_{\vartheta} \frac{\mathcal{D}}{\omega_{\Delta}} + \left(1 - \xi_{3} \right) \left(B_{\vartheta} \frac{\mathcal{N}^2}{\omega_{\Delta}^2} + C_{\vartheta} \frac{\Omega^2}{\omega_{\Delta}^2} \right) \right\} \\ \overline{\tau}_{i\rho} &= C_l(\mu)\overline{\mathcal{L}}_{i\rho} + C_g(\mu)\Delta^2 \left\{ \xi_{\frac{5}{3}}\overline{\mathcal{G}}_{i\rho} - \left(1 - \xi_{\frac{7}{3}} \right) \frac{1}{1 + \mu^{-\frac{2}{3}}} \frac{a_{\varphi}}{\omega_{\Delta}} \left[1 - A_{\varphi}^{\mathcal{S}} \frac{\mathcal{D}}{\omega_{\Delta}} - B_{\varphi}^{\mathcal{S}} \frac{\mathcal{N}^2}{\omega_{\Delta}^2} \right] \eta_i \right\} \end{split}$$

 A_*, B_*, C_*, D_* are constants $b_{ij}^{\mathcal{G}} = \frac{\overline{\mathcal{G}}_{ij}^{\tau}}{\overline{\mathcal{G}}_{i\nu}^{\tau}} - \frac{\delta_{ij}}{3}$ is the anisotropy tensor of \mathcal{G}^{τ} .

 ξ_* are functions of \mathcal{F}_Δ , with values between 0 and 1

IWPCTM12 12-17 July 2010	Intro	RDT limit	Equil. limit	General Case	Validation RDT	Validation Eq.
	000	00000	0000	000	000000000000	000000000

Validation

 tro
 RDT limit
 Equil. limit
 General Case
 Validation RDT
 Validation Eq.

 00
 00000
 0000
 00000
 000000000
 0000000000

All subsequent tests are only preliminary

- They are necessary but certainly not sufficient to validate any model
- The tests consist in a priori comparisons against two DNS simulations
 - HIT/expansion wave interaction (RDT conditions)
 - Rayleigh Taylor Instability (Equilibrium conditions)
- Two aspects are examined :
 - Verification of the spectra on which the SGS model is based
 - Verification of the SGS model itself, but only for the velocity field !

DNS simulations with Triclade

(cf. M. Boulet and J. Griffond 10th IWPCTM) solves 3D compressible Navier-Stokes equations + concentration equations for mixtures of perfect gases.

- massively parallel implementation (MPI and MPI-I/O);
- object oriented conception (C++);
- several different high-order shock-capturing schemes.

Presently used scheme (hyperbolic part) :

- high (5th) order one-step scheme (cf. V. Daru and C. Tenaud, JCP 193 (2004)) with uniform time and space accuracy;
- directional splitting;
- direct Euler solver (not Lagrange+projection);
- wave propagation method (cf. R.J. LeVêque);
- different Riemann solvers (cf. E.F. Toro);

Presently used scheme (elliptic part + sources) : operator splitting, 2^{nd} order treatment for viscous-diffusive terms and for sources.

Interaction of HIT with a rarefaction wave

- Set-up :
 - A homogeneous isotropic turbulence with $\kappa^{-5/3}$ spectrum is impacted by a rarefaction wave
 - Initial values of turbulent field : $\overline{\rho'^2}/\overline{\rho}^2 \sim 3\cdot 10^{-4}$, $\widetilde{k}/a^2 \sim 1.5\cdot 10^{-3}$, $l_t \sim \frac{1}{3}$
 - RDT conditions are met : $\omega \sim 0.1, S \sim 0.7 - 7 \implies Fr \sim 0.015 - 0.15$
 - Resolution : 256 \times 256 \times 896
 - Domain size : $1 \times 1 \times 3.5$

RDT / DNS comparisons

1D density spectra at $\omega t = 0.7$ at different locations in the expansion wave :

with and without non-dimensionnalization by the RDT solution

RDT : Mass flux and anisotropy inertial range scaling

12-17 July 2010

Anisotropy spectra ($E_{xx} - E_{zz}$) at $\omega t = 0.7$ at different locations in the expansion wave

Density-velocity spectra at $\omega t = 0.7$ at different locations in the expansion wave :

Validation RDT

0000000000 00000000

RDT : Mean subgrid scale energy $\overline{\tau}_{kk}$

RDT : Mean subgrid scale anisotropy $b_{11} = \frac{\overline{\tau}_{11}}{\overline{\tau}_{\mu\nu}} - \frac{1}{3}$

RDT : Structural and functional contributions to $\overline{\tau}_{kk}$

RDT : Fluctuating and mean subgrid scales for $\overline{\tau}_{kk}$

$$\overline{\boldsymbol{\Sigma}}(\Delta) = \int \left[1 - \left|\hat{\boldsymbol{G}}(\boldsymbol{\kappa}, \Delta)\right|^2\right] \boldsymbol{M}(\boldsymbol{\kappa}) d\boldsymbol{\kappa} + \Delta^2 \boldsymbol{G}^* \boldsymbol{C} = \boldsymbol{\Sigma}^{\textit{Fluc.}} + \boldsymbol{\Sigma}^{\textit{Mean}}$$

RDT : Fluctuating and mean subgrid scales for b_{11}

Rayleigh-Taylor turbulence

- Set up :
 - Atwood = 0.05
 - gravity = 1
 - Schmidt = 1
 - Periodic boundary conditions on the sides
 - Free walls at top and bottom
 - At initial time : perturbed velocity field at the interface
 - domain = $1 \times 1 \times 3$
 - Grid = $512 \times 512 \times 820$ with uniform grid spacing in $1 \times 1 \times 1$ domain
 - Calculation is stopped when the mixing zone reaches the non-uniform part of the grid
- Inertial range scaling appears.
 Equilibrium conditions are met for scales smaller than the integral scale

RTI : velocity spectrum

Vertical velocity 1D transverse spectrum divided by $\widetilde{\varepsilon}^{\frac{2}{3}}$ at the mixing zone center

RTI : anisotropy spectrum

Velocity anisotropy 1D transverse spectrum $E_{zz} - E_{xx}$ divided by N^2 at the mixing zone center

RTI : density flux spectrum

Density-vertical velocity 1D transverse spectrum $E_{\rho z}$ divided by $|\nabla \overline{\rho}|$ at the mixing zone center

RTI : density spectrum

Density 1D spectrum divided by $\widetilde{\varepsilon}_{\rho}\widetilde{\varepsilon}^{-\frac{1}{3}}$ at the mixing zone center

RTI : Mean subgrid scale energy $\overline{\tau}_{kk}$

RTI : Mean subgrid scale anisotropy $b_{11} = \frac{\overline{\tau}_{11}}{\overline{\tau}_{\mu\nu}} - \frac{1}{3}$

RTI : Subgrid scale anisotropy $\overline{\tau}_{zz} - \overline{\tau}_{xx}$

RDT : Structural and functional contributions to $\overline{\tau}_{kk}$

Conclusions

A subgrid scale model has been proposed

- This SGS was designed to match the two opposite limits of RDT and spectral equilibrium
 - A few preliminary *a priori* validation tests have been performed
 - Expansion wave/HIT : RDT solution scalings were checked
 - Rayleigh-Taylor : equilibrium spectra were not contradicted by DNS results
 - The model seems to improve the prediction of anisotropy
- This is only the beginning of a validation process that will include more complete tests